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Abs t rac t - -A general kinematic method for determining two-dimensional normal fault geometries from a large 
number of hanging wall horizons has been tested on synthetic data and laboratory models. The method assumes 
that the hanging wall deforms by a combination of arbitrarily inclined bulk simple shear and differential 
compaction. It should be applicable to normal faults which do not change shape as deformation proceeds. Fault 
geometry, the inclination of simple shear and compaction parameters may all be uniquely determined provided 
that the geometry of the hanging wall stratigraphy is accurately known prior to and after deformation. Testing the 
method on synthetic data has shown that unique solutions can be found. Solutions obtained using large numbers 
of hanging wall horizons of laboratory-modelled faults are encouraging: in each case the method was able to 
predict a fault geometry close to the fault geometry used in the laboratory model. Hence bulk simple shear 
appears to be a good approximation of hanging wall deformation. The inclination of simple shear appears to be 
controlled by the underlying fault geometry rather than the amount of extension or the composition of the 
hanging wall fill. In future, it is hoped that a general method similar to this one can be applied routinely to depth- 
converted seismic reflection data. 

INTRODUCTION 

KNOWLEDOE of the geometry of normal faults at depth is 
of importance both to academics and to the oil industry. 
On seismic refection sections, it is often possible to 
image clearly the beds within a fault block but not the 
fault surface itself. In this paper we extensively test a 
kinematic method which relates the geometry of the 
fault surface to the geometry of the observed beds. 

Over the last 10 years a large number of kinematic 
models have been suggested. These kinematic models 
fall into three broad categories: (a) shear models (Ver- 
rail 1981, Gibbs 1983, Jackson & Galloway 1984, Klig- 
field et al. 1984, White et al. 1986, Faure & Chermette 
1989, Groshong 1990, Nunns 1991); (b) flexural-slip 
models (Suppe 1983, Davison 1986, Rowan & Kligfield 
1989, Higgs et al. 1991); and (c) constant-slip models 
(Williams & Vann 1987). All of these models are two- 
dimensional (i.e. they assume that deformation occurs 
within the plane of the section). White & Yielding 
(1991) have suggested that the existence of such large 
numbers of models is unsatisfactory; it would be much 
better if there was just one model that could be applied 
in all cases rather than having to decide which model is 
applicable in each individual case. 

White & Yielding (1991) conclude that the most 
applicable method is the simple shear model. Roberts et 
al. (1990) have come to a similar conclusion, although 
they are particularly concerned that any such method 
should only be applied to small-scale surficial normal 
faulting. The simple shear model conserves mass, pre- 
dicts faulting within the hanging wall, and can easily be 
modified to allow for compaction. Furthermore, the 
shear model can be used to solve both the forward and 

inverse problems (i.e. the geometry of the beds can be 
predicted from the fault and more importantly the 
geometry of the fault can be calculated from the ob- 
served beds). 

At  present, shear models assume that the hanging wall 
deforms by bulk simple shear which can be either verti- 
cal (Verrall 1981) or arbitrarily inclined (White et al. 
1986). The best known shear model is the 'Chevron 
construction' (Verrall 1981) which assumes that the 
hanging wall deforms by vertical shear. Considering that 
vertical shear is a special case of arbitrarily inclined 
shear, it is clear that arbitrarily inclined shear is the more 
useful model. Hence White & Yielding (1991) have 
suggested on the basis of some preliminary results that 
the arbitrarily inclined bulk simple shear model can be 
used generally to determine fault geometry at depth. 

The arbitrarily inclined simple shear model has been 
applied in the past to synthetic faults, laboratory- 
modelled faults, and real seismic examples (White 1987, 
1992, White & Yielding 1991). It is now apparent that 
the inversion scheme used in this previous work was not 
entirely satisfactory. The original scheme was based on 
the minimization of the areal difference between faults 
predicted from each individual bed (White 1987). In this 
paper, we show that area is not the most useful measure 
of the difference between the predicted faults and in- 
stead we propose a more appropriate misfit function. 

The main purpose of this paper is to test the revised 
scheme on synthetic data and more importantly to apply 
it to a large number of published laboratory-modelled 
faults (McClay & Ellis 1987, Ellis & McClay 1988). This 
paper is therefore a considerable expansion of White 
(1992), where some preliminary results of the original 
inversion scheme were presented. 
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THE METHOD 

White et al. (1986) derived a generalized model for the 
deformation of beds within the hanging wall of a fault 
block. This model was subsequently revised by White 
(1987) to allow for large displacements. The main 
assumptions in both cases are that the fault remains the 
same shape throughout deformation, that the stratigra- 
phy is known prior to and after deformation, and that 
the hanging wall deforms within the plane of the section 
by a combination of arbitrarily inclined bulk simple 
shear and differential compaction. A major constraint 
on the model is that solid area (i.e. the total area minus 
the integrated porosity) must be conserved during defor- 
mation. Compaction can then be calculated using an 
empirical relationship between porosity ~(z), and depth 
z (e.g. Sclater & Christie 1980): 

¢(z) = ~o exp ( - z / 2 ) ,  (1) 

where @o is the initial porosity and 2 the porosity decay 
length. Deformation of the hanging wall is consequently 
defined by three parameters: the angle of simple shear a, 
measured from vertical; and the two parameters related 
to compaction, tPo and 4. a is positive if the shear is 
antithetic in direction. 

Ideally compaction should be modelled as occurring 
vertically. However this is not a simple problem to solve 
when combined with non-vertical simple shear (Wal- 
tham 1990). The simplest approximation is to constrain 
compaction to occur parallel to the direction of shear. 
This solution is most valid for a less than 45 °. 

The equation (White 1987) relating deformation of 
the hanging wall, by a combination of simple shear and 
differential compaction, to the geometry of the fault is 
(for a full derivation see White 1987, 1992): 

F'(x '  + h ' )  = F ' (x ' )  - R ' ( x ' )  + B ' (x '  + h')  

+ ¢~ '{exp  ( -  F'(x ' ) /2 ' )  

- exp ( - R ' ( x ' ) / 2 ' )  

- exp( -F ' (x '  + h ' ) / i ' )  

+ exp ( - B ' ( x '  + h')/2')}. (2) 
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Fig. 1. Co-ordinate system and geometrical relationships used to 
derive equation (2). R is bed shape prior to extension (i.e. the 
regional). B is the geometry of deformed bed. In the rotated frame, 
a= R'(x'),  b =  F'(x'), c =  B'(x' + h') and d = F ' ( x ' + h ' ) .  Solid 

lengths [abl and Icdl are equal. 
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Fig. 2. The inverse problem: in general, for given values of a,  q~o and 2, 
faults A and B can be calculated using beds A and B. To find correct 
fault geometry and correct values of a,  q~o and 2, misfit function ~t 
between two calculated faults must be minimized by varying a,  ~o and 
2. P = number of points at which misfit is calculated. N = number of 
beds/faults. Misfit function evaluated by summing (Yik-- Yjk) for all 

pairs of calculated faults. 

The reference frame x - y  (Fig. 1), for all the co- 
ordinates, has been rotated from vertical clockwise 
through a, the angle of simple shear being considered, to 
reference frame x ' - y ' .  F ' (x ' )  and B' (x ' )  are the y' co- 
ordinates, at a point x', of the fault and bed, respect- 
ively, in the rotated frame. The variable h' is the heave, 
q~ is the initial porosity, 2' is the porosity decay length, 
and R'  (x')  is the shape of the bed before deformation 
(i.e. the regional) all within the rotated frame. When the 
initial porosity (@o) is zero or the decay length (2) is 
infinitely large, the equation reduces to a much simpler 
form which is equivalent to the beds deforming by 
simple shear alone without compaction 

F'(x '  + h ' )  = F ' (x '  - R ' ( x ' )  + B ' (x '  + h') .  (3) 

Equation (2) may be solved by iteration in either the 
inverse problem for F when B is given or in the forward 
problem for B when F is given, provided the defor- 
mation parameters a, q~o and 2 are set. Five iterations 
usually yield a solution accurate to several per cent. 
(White & Yielding 1991). Equation (3) provides the 
initial solution. 

Unfortunately, in the inverse problem, the three para- 
meters (a, ~o and 2) must all be known so that the 
correct fault geometry (F) may be calculated from a bed 
(B). In general only broad constraints may be placed on 
these three parameters. 
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Fig. 3. Misfit function & is function of a,  q~o and 2. Minimum value of 
2t can be determined by systematically searching a--Co-), space. 
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Fig. 4. (a) Synthetic model produced by forward modelling (a = 30 °, q~o = 40%, 2 = 5 km). Scale indicated at the right- 
hand-side of the model. (b) Plot of number of points P at which misfit is measured vs a. Note linear relationship. (c) shows 
three orthogonal plots of function ~t(a,4~o,2) positioned at known solution (see text). In each case, the correct solution (i.e. 
minimum value of all) lies within the lightest shaded area. Contour interval indicated at the right-hand-side of each plot. The 
next figure organized in a similar fashion. (d) Same as (c) indicating the path taken of two arithmetic inversion runs using 
Powell's algorithm (see text and Press et al. 1986). Solid triangles indicate path from starting point at a = 0 °, 9o = 0% and 
~, = 1 km. Stars indicate path starting from a = 60 °, q~o = 90% and 2 = 10 km. Arrows indicating method converges to 

correct solution from both starting points. 

(1) a ,  t he  i n c l i n a t i o n  of  s imple  shear .  S ince  we  a re  
c o n c e r n e d  wi th  a n  e x t e n s i o n a l  s y s t e m , a  is, u n l i k e l y  to  b e  
less t h a n  0 °, as this  w o u l d  resu l t  in  s h o r t e n i n g  wi th in  the  
h a n g i n g  wall .  P r e l i m i n a r y  resu l t s  sugges t  tha t  a is a lso 

u n l i k e l y  to be  g r ea t e r  t h a n  60 ° ( W h i t e  & Y i e l d i n g  1991). 
(2) ~bo, the  in i t i a l  po ros i t y ,  c a n n o t  b e  less t h a n  0 %  

a n d  is g iven  a n  a r b i t r a r y  u p p e r  l imi t  of  9 0 % .  
(3) 2, t he  p o r o s i t y  decay  l eng th ,  for  the  m a i n  cat-  

egor ies  of  s e d i m e n t  var ies  b e t w e e n  2 a n d  10 k m  (Sc la te r  
& Chr i s t i e  1980). 

T h e r e f o r e ,  if t he  g e o m e t r y  of  o n l y  o n e  b e d  is k n o w n  
t h e r e  is n o  u n i q u e  s o l u t i o n  to the  p r o b l e m .  H o w e v e r ,  if 

the  d e f o r m a t i o n  p a r a m e t e r s  a n d  the  fau l t  a re  c o m m o n  
to all beds ,  all t he  u n k n o w n s  i n c l u d i n g  the  fau l t  g e o m -  
e t ry  m a y  be  d e t e r m i n e d .  T h e  m e t h o d  e m p l o y e d  to 
ca lcu la te  the  fau l t  g e o m e t r y  is bes t  e x p l a i n e d  by  Fig.  2. 
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Fig. 5. Inverse modelling of three synthetic examples where fault shape stays the same (flat-ramp-flat) but the scale of the 
model changes (indicated at the right-hand-side of each model). In each case, a=30 °, ~o=40%, ~=5 km. Note changes in 

shape of misfit function in each case. 
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Fig. 6. (a) Dry sand-box model of normal fault (McClay & Ellis 1987, p. 118, fig. 5b. Experiment No. 93a, homogeneous 
sand layers). Reproduced with permission of Blackwel] Scientific Publications Ltd. (b)-(d) Inverse models of (a) using 
geometry of 16 hanging wall horizons to determine fault geometry. Observed beds and fault; solid lines; calculated faults; 
dotted lines. Note best fit is example (c). (e) Plot of misfit function vs a. Note in this and subsequent examples misfit function 

normalized to 100 and plotted on logarithmic scale. 

Here the same values of a,  q~o and 2, are used to predict 
fault A from bed A and fault B from bed B. If the 
predicted faults from each bed are the same (e.g. if fault 
A is the same as fault B), then, provided the assumptions 
regarding the deformation of the hanging wall are cor- 
rect, the real fault will have been found. The inclusion of 
more than two beds yields more predicted faults and so 
increases confidence in the solution. 

The original scheme used numerical integration to 
calculate the areal difference between the predicted 
faults within a-~o-2 space. When the areal difference is 
a mimimum it was concluded that the parameters defin- 
ing the deformation of the hanging wall and the correct 
fault had been found. However, it is now apparent that 
although the idea of minimizing the difference between 
the predicted faults is a valid basis for an inversion 
scheme, area is not the most suitable measurement. 
Higher angles of shear result in the inversion scheme 
predicting shorter faults, the consequence of which, is 
that the areal difference is generally biased to smaller 
values at higher angles of shear. Instead of using area to 

compare the misfit between the sets of predicted faults, 
the distance in the y direction (i.e. vertical in the unro- 
tated reference frame) between the predicted faults at 
every point along the section is now calculated, squared, 
summed, and divided by the number of points to give 
~ ( a ,  q)o, 2), a measure of misfit, 

J~(a, q~o, 2) = ~ ( Y i k  - y;k) 2 , (4) 
z 1 j = l + i k = l  

where N is the number of imaged beds and P is the 
number of points at which the misfit is measured (Fig. 2). 
As we show in the next section, P is approximately a 
linear function of a ,  therefore ~ ( a ,  q~o, 2) is not affected 
by the length of the predicted fault and is a more 
appropriate method of comparing misfit at different 
values of a. 

The revised inversion scheme is applied in a similar 
way to White (1987), the only difference being the 
calculation and minimization of misfit ~ ( a ,  q~o, 2) within 
a%bo-2 space (Fig. 3), instead of areal difference. 
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Fig. 7. (a) Dry sand-box model of normal fault (McClay & Ellis ]987, p. 118, fig. 5b. Experiment No. 93b, homogeneous 
sand layers). Reproduced with permission of Blackwell Scientific Publications Ltd. (b) inverse models of (a) using geometry 
of 14 hanging wall horizons. (c) Misfit function vs a. (d)-(f) same as before using sand-box model from McClay & Ellis 
(1987, p. ] 15, fig. 5c. Experiment No. 93c), homogeneous sand layers. Reproduced with permission of Blackwell Scientific 

Publications Ltd. Twelve beds used in inversion. (g) Calculated extension in per cent for each bed in (d). 

TESTING THE INVERSION SCHEME SYNTHETIC FAULTS 

Before the inversion scheme can be applied generally 
it is necessary to establish the nature of function ~ ( a ,  
q~o, 2) for different examples. Synthetic and laboratory- 
modelled faults in which both the geometries of the beds 
within the hanging wall and the fault geometry are 
known and where the assumption of two-dimensionality 
is valid provide an appropriate initial test. 

The method used to generate the synthetic examples 
is demonstrated in Fig. 4. The forward model was first 
run to calculate beds from a defined fault shape (Fig. 
4a), with the deformation parameters set at a - - 3 0  °, 
~o -- 40 °/0 and 2 -- 5 km. The inverse model was then 
used to calculate misfit function ~t(a,  ~o, 2) within 
a--q~o-2 space from the beds calculated by the forward 
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Fig. 8. (a) McClay & Ellis (1987, p. 121, fig. 6a. Experiment No. 89a) homogeneous sand layers. Reproduced with 
permission of Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Fourteen beds used. 
(b) McClay & Ellis (1987, p. 121, fig. 6b. Experiment No. 89b), homogeneous sand layers. Reproduced with permission of 

Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Fourteen beds used. 

model.  Figure 4(b) shows that there is an approximately 
linear relationship between a and P (the number  of 
points at which misfit was measured).  The linear re- 
lationship means that ~t (a ,  q~o, 2) is a valid measure of 
the misfit between the predicted faults throughout 
a-q~o-2 space. Resulting values of ~t(a ,  ~o,2) were 
contoured on three orthogonal sections located at the 
values of a,  q~o and 2 used in the forward model (Fig. 4c). 
The contour plots give a good impression of the proper-  
ties of the function. ~t(a ,  ~o, 2) is a smooth function with 
a global minimum corresponding to values in running 
the forward model.  The inverse and forward models are 
consequently self consistent. It is also apparent  from the 
shape of the contours that a and q~o are more significant 
than 2 in constraining the minimum of the function. 

The inversion scheme has been automated in order to 
find the global minimum of ~t(a ,  q~o, 2) without having 
to sample a-q~o-2 space completely. The method used 
was the modified Powell 's method (Press et al. 1986). 
The method completes a number  of successive line 
minimizations in a series of directions. The directions 

are governed by the average of the previous set of 
directions minus the direction in which the function 
made its largest decrease. The initial directions are set as 
the orthogonal unit vectors. Figure 4(d) illustrates the 
paths the method took through a-q~o-2 space towards 
the global minimum (indicated by the arrow) when 
started from two different initial points for the example 
in Fig. 4(a). The star symbols indicate the path taken 
when the method was started at a = 60 °, q~o = 90% and 
2 = 10 km. Seventeen iterations were required to locate 
the minimum when started at this point. The solid 
triangles indicate the path taken when the method was 
started at a = 0 °, q~o = 0% and 2 = 1 km: in this case 11 
iterations were required to locate the minimum. 

The model we use takes compaction into account and 
therefore it is important  to apply the inversion to faults 
of different sizes to determine the sensitivity of ~t(a ,  ~o, 
2) to scale. In Fig. 5, three forward models using the 
same ramp-f la t  fault geometry at different scales are 
shown. In each case, the deformation parameters  were 
set at a = 30%, ~Po = 40% and )~ = 5 km. Figure 5(a) is at 
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Fig. 9. (a) McClay & Ellis (1987, p. 122, fig. 6c. Experiment No. 89c) homogeneous sand layers. Reproduced with 
permission of Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Fourteen beds used. 
(b) McClay & Ellis (1987, p. 122, fig. 6d. Experiment No. 89d), homogeneous sand layers. Reproduced with permission of 

Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Fourteen beds used. 

a scale similar to the model used in Fig. 4. ~ ( a ,  ~0o, 4) is 
smooth and the location of the solution is equally de- 
pendent on a and q~o. The fault in Fig. 5(b) has a length- 
scale 4 orders of magnitude smaller. Note that in this 
instance, the location of the solution is entirely con- 
trolled by the value of a. This result agrees with what 
one might have expected: the scale of the fault is con- 
siderably smaller than the compaction decay length and 
no compaction takes place even though there is a finite 
porosity of 40%. For comparison, a larger scale fault is 
shown in Fig. 5(c) (length scale greater than Fig. 5a by a 
factor of 5). In this case, A/t(a, ~bo, 4) looks very similar to 
that of Fig. 5(a) with q~o and 2 having slightly more 
control on the location of the solution. 

LABORATORY-MODELLED FAULTS 

Published laboratory models of normal faulting pro- 
vide a useful means for testing kinematic methods such 
as that discussed here. The advantages of using these 

models are: (a) they are two-dimensional and the 'strati- 
graphy' is accurately known; (b) the fault geometry is 
known and does not change as deformation proceeds; 
(c) they are more realistic than synthetic examples and 
often show complex deformation. 

Previously, it was argued that laboratory-modelled 
faults showed deformation which was more complex 
than planar bulk inclined simple shear (see e.g. Ellis & 
McClay 1988, Waltham 1989, 1990). The preliminary 
results of White (1992) suggested that this conclusion 
was overly pessimistic and that while the deformation is 
complex it could be adequately represented as bulk 
inclined simple shear. Here we test this assumption 
more rigorously by applying the revised inversion 
scheme to a large number of published laboratory- 
modelled faults. 

All the laboratory models presented here come from 
McClay & Ellis (1987) and Ellis & McClay (1988). In 
each case, digitized hanging wall horizons were used to 
calculate function A~ and hence constrain the fault geom- 
etry at depth. Since the laboratory models were small 
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Fig. 10. (a) Ellis & McClay (1988, p. 61, fig. 10a. Experiment No. 126) homogeneous sand layers. Reproduced with 
permission of Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Seventeen beds used. 
(b) Ellis & McClay (1988, p. 62, fig. 11a. Experiment No. 128), alternate sand and clay layers. Reproduced with permission 
of Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Twenty-eight beds used. (c) Ellis 
& MeClay (1988, p. 62, fig. 12a. Experiment No. 140, alternate mica and sand layers. Reproduced with permission of 

Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Twenty-three beds used. 

scale (no greater  than 15 cm high) compaction did not 
have significant effect on the deformation of the hanging 
wall horizons. Hence  parameters  q~o and 2 were omit ted 
from the inversion scheme. In each example ~ ( a )  is 
normalized to 100 and plotted on a logarithmic scale 
against a.  

Example i 

The first example (Figs. 6 and 7) consists of a series of 
three experiments.  Each of the experiments represents 
the progressive extension across a single dog-leg fault of 
homogeneous  sand layers which were horizontal prior to 
extension. In Fig. 6(a) 7.5% extension had occurred, 
15% in Fig. 7(a), and 25% in Fig. 7(d). 

The graphs of log10 ~t vs a (Figs. 6e and 7c & f) 
indicate a minimum at a -- 28 ° for the first experiment ,  
at a = 31 ° in the second experiment,  and at a = 31 ° in the 
final experiment.  The faults calculated at the values of a 
indicated by the minimum of N ( a )  are shown in Figs. 
6(c) and 7(b) & (e). In both Figs. 7(b) & (e) the 
calculated faults are close to each other and match the 
fault used in the laboratory model well. In Fig. 6(c) the 
predicted faults are more widely spread and match the 
actual fault less well. We think that this relatively poor  
solution is a result of the very small amount  of extension. 
However ,  compared  with the predicted faults from the 

'Chevron construction'  (Verrall 1981), shown in Fig. 
6(b), it is apparent  that our solution is significantly 
better.  Note also that the predicted faults from the 
'Chevron construction'  are widely spaced resulting in a 
high value of misfit indicated on the graph. A large value 
of misfit also occurs at a = 60°: the actual faults which 
are predicted from the hanging wall horizons at this 
value of a are shown in Fig. 6(d). Note  that the calcu- 
lated areal difference between the predicted faults at 
a = 60 ° is lower than at a = 28 °. Therefore ,  for the 
reasons discussed previously, if the inversion had been 
based on areal difference instead of ~t(a) ,  the wrong 
solution would have been obtained. 

The inversion had been applied previously by White 
(1992) to the five uppermost  beds in the second experi- 
ment.  The misfit between the predicted faults was not 
evaluated but est imated by trial and error. The esti- 
mated  minimum misfit was at a = 33 °, which is close to 
the value of 31 ° we have now calculated from all the 
beds, White (1992) also showed that the inclusion of an 
initial porosity (q~o) resulted in the prediction of differ- 
ent faults than when q~o was set at zero. As emphasized 
already, owing to the small size of the laboratory 
models,  compaction had no effect on the deformation of 
the hanging wall horizons. Therefore  a fault calculated 
from a horizon when q~o = 0% should be the same as 
when q~o is non-zero.White (1992) obtained a differ- 
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10% extens ion  (b) 25% extens ion  (c) 40% extens ion  
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Fig. 11. (a) Ellis & McClay (1988, p. 63, fig. 14a. Experiment No. 129a), homogeneous sand layers. Reproduced with 
permission of Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Twelve beds used. 
(b) Ellis & McClay (1988, p. 63, fig. 14b. Experiment No. 129b), homogeneous sand layers. Reproduced with permission of 
Blackwell Scientific Publications Ltd. Inverse model and misfit function shown as before. Sixteen beds used. (c) Ellis & 
McClay (1988, p. 63, fig. 14c. Experiment No. 129c), homogeneous sand layers. Reproduced with permission of Blackwell 

Scientific Publications Ltd. Inverse model and misfit function shown as before. Twenty beds used. 

ence due to scaling problems: depths of burial, z in 
equation (1), were measured in kilometres instead of 
centimetres. The same scaling problem is apparent in all 
of the laboratory examples used in that paper. 

White et al. (1986) point out that there are important 
implications for the amount of extension that actually 
occurs if the hanging wall deforms by positively inclined 
simple shear. They show that the true extension, e, is 
related to the apparent extension or heave, h, by 

e = h(1 + tan 0 tan a),  (5) 

where 0 is the average dip of the main fault between the 
regional level and the point where the deformed bed 
meets the fault. The result of calculating the true exten- 
sion for each of the beds in the third experiment is shown 
in Fig. 7(g). The amount of extension which actually 
took place in the experiment was 25%. The calculated 
extension for each of the beds is close to 25%. Similar 
results have been obtained for the other laboratory- 
modelled faults. 

Example 2 

The experiments in this example (Figs. 8 and 9) have a 
more rounded fault geometry than in Example 1. The 
hanging wall block immediately adjacent to the footwall 

appeared to have deformed by a rigid rotation rather 
than by simple shear. Therefore ,  it was anticipated that 
the inversion scheme, which assumes that deformation is 
solely by simple shear, would not be successful in pre- 
dicting the correct fault from the deformed hanging wall 
horizons. However,  in each case the minimum value of 
~t(a) calculated from the horizons coincided with a 
value of a which predicts faults fairly close to the real 
fault. The greatest difference between the predicted 
faults and the real faults is observed in the rotated 
region. 

As in Example 1, the difference between the actual 
and predicted faults in the first experiment (Fig. 8a) was 
greater than in subsequent experiments (Figs. 8b and 9a 
& b). Therefore  it appears that simple shear represented 
deformation of the hanging wall better  when there has 
been extension of more than 7.5%. 

Example 3 

In each of the experiments shown in Fig. 10 a different 
hanging wall fill has been used with the same fault shape. 
The fault in each case is listric with a dip of 45 ° at the 
surface. 

The first experiment (Fig. 10a) has a hanging wall fill 
of homogeneous sand. The horizons at the bottom of the 
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Fig. 12. Summary of results. Shape of symbol indicates geometry of normal fault used in experiment: x = planar dog-leg 
(60 ° average dip of main fault); + = listric (62 ° average dip of main fault); C) = listric (24 ° average dip of main fault): 
A = listrie (34 ° average dip of main fault); [] = listric (52 ° average dip of main fault); ~ = ramp-flat (38 ° average dip of 
main fault). Shading of symbol indicates composition of hanging wall fill: open = homogeneous sand; solid = alternate sand 
and clay layers; hatched = alternate sand and mica layers. (a) Number of experiments for each value of a. (b) Relationship 
between a and degree of extension. (c) Relationship between a and material used in hanging wall fill. (d) Relationship 

between a and average dip of main fault surface (see Table 1). 

Table i. Summary of results 

93a Homogeneous sand 7.5 60 28 
93b Homogeneous sand 15 60 31 
93c Homogeneous sand 25 60 31 
89a Homogeneous sand 7.5 62 39 
89b Homogeneous sand 15 62 39 
89c Homogeneous sand 25 62 41 
89d Homogeneous sand 33 62 35 
126 Homogeneous sand 30 24 5 
128 Sand and clay 35 24 8 
140 Sand and mica 35 24 10 
125 Homogeneous sand 45 34 14 
116 Sand and clay 27 34 16 
139 Sand and mica 50 34 2 
124 Homogeneous sand 50 52 18 
143 Sand and clay 50 52 18 
133 Sand and mica 65 52 27 
129a Homogeneous sand 10 38 25 
129b Homogeneous sand 25 38 27 
129c Homogeneous sand 40 38 25 
131a Sand and clay 10 38 24 
131b Sand and clay 30 38 26 
131c Sand and clay 40 38 27 
119a Sand and mica 12 38 19 
l19b Sand and mica 28 38 42 
119c Sand and mica 40 38 28 

Average dip of 
Experiment Composition of Extension main fault ct 
No, hanging wall (%) (o) (o) 
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section were laid down prior to extension whereas the 
upper horizons were deposited during extension, and as 
such represent syn-rift sediments. Both the pre-rift and 
syn-rift horizons were included in the inversion scheme. 
The faults predicted from the horizons, with a set at the 
value corresponding to the minimum of At(a), closely 
match the actual fault. 

In the next experiment, the hanging wall fill was 
changed from homogeneous sand to alternate layers of 
sand and clay (Fig. 10b). The use of alternate sand and 
clay layers introduced a competency contrast between 
the layers (Ellis & McClay 1988). Function ~ ( a )  has a 
unique minimum at a equal to 8 ° and the predicted faults 
at this value of a match the actual fault very well. 
Consequently, even with the introduction of a compe- 
tency contrast between the layers, deformation of the 
hanging wall was represented adequately by bulk simple 
shear. 

The hanging wall fill in the final experiment consisted 
of alternate layers of sand and mica (Fig. 10c). Mica 
flakes parallel to bedding should produce anisotropy 
between the layers. Subsequently, extension was 
expected to have been accommodated by some degree 
of bedding-parallel slip (Ellis & McClay 1988) rather 
than by bulk simple shear alone. However, the pre- 
dicted faults at the value of a indicated by the minimum 
value of ~ ( a )  all match the real fault closely. There- 
fore, although some inter-bed slip may have occurred, 
the average deformation of the hanging wall can still be 
adequately modelled by bulk inclined simple shear. 

Example 4 

The ramp-flat fault geometry was used in each of the 
laboratory experiments shown in Fig. 11. Each of the 
experiments represents the progressive extension from 
the fault surface of layers of homogeneous sand. The 
faults predicted from the value of a indicated by the 
minimum of N(a) match the actual fault reasonably 
well. Hence, even when complex fault geometries are 
used, bulk simple shear is an adequate kinematic 
approximation of the deformation. 

Summary 

The results of Figs. 6-11 in addition to the results of 
inverting other laboratory models published in McClay 
& Ellis (1987) and Ellis & McClay (1988) are summar- 
ized in Fig. 12 and in Table 1. Obviously, it is difficult to 
draw firm conclusions from a relatively small body of 
laboratory models. Therefore our results should be 
treated with some caution. To gain a better understand- 
ing of why hanging wall deformation can be represented 
by a specific angle of bulk simple shear it would be 
necessary to complete many more experiments and 
apply statistical analysis to the results. 

Each laboratory model is labelled according to the 
average dip of the main fault and the hanging wall fill 
used (see Caption to Fig. 12 for detailed explanation). A 
total of 25 experiments were inverted, and in 16 cases a 

was between 15 ° and 35 ° (Fig. 12a). In all cases a was less 
than 45 ° . 

Figure 12(b) shows a as a function of extension. In 
general, as the amount of extension increases, a stays 
approximately constant indicating that the orientation 
of the shear planes along which deformation is 
imagined to have occurred remains the same through- 
out the period of extension. The composition of the 
hanging wall fill has little effect on a (Fig. 12c). Models 
where the same fault shape and varying hanging wall 
fills are used, results in approximately the same value 
ofa .  

Finally, a is plotted as a function of average dip of 
the main fault surface (Fig. 12d). It is clear that fault 
shape is important in determining the value of a. A 
general relationship is apparent: higher values of main 
fault average dip result in higher values of a. The 
dynamic reason for the relationship and indeed why 
hanging wall deformation can be generalized by bulk 
inclined simple shear is not readily apparent from the 
kinematic model. 

CONCLUSIONS AND FURTHER W O R K  

This paper builds on the preliminary results presented 
by White (1992). The most important conclusion is that, 
despite the fact that hanging wall deformation is often 
complex, it can be represented as arbitrarily inclined 
bulk simple shear. It must be emphasized that planar 
simple shear may not be clearly apparent since it only 
represents the bulk or average deformation: the vorti- 
city caused by bulk simple shear can introduce local 
complexity in the form of small-scale rotation and syn- 
thetic faulting. Note also that bulk inclined simple shear 
does not preclude the existence of local flexural-slip 
(Davison 1986, Higgs et al. 1991). 

The method has been tested in two ways. Firstly, 
synthetic hanging wall stratigraphy generated by for- 
ward modelling was used to check the algorithm and to 
examine the shape of misfit function, ~t(a, ~o, 2). At is 
shown to be a more appropriate method of measuring 
misfit than areal difference which was used previously. It 
varies smoothly and has a global minimum, thus indi- 
cating that unique solutions can be obtained. The inver- 
sion scheme was successfully automated to find the 
global minimum without having to sample a-q~o-2 space 
completely. The method used to find the global mini- 
mum was the modified Powell's Method (Press et al. 
1986). 

The method has been tested on large numbers of 
published two-dimensional laboratory experiments. In 
each case, as many hanging wall horizons as possible are 
used in the inversion scheme. The results are encourag- 
ing and suggest, at this stage, that the underlying fault 
geometry rather than either the degree of extension or 
the composition of the hanging wall fill, is the main 
control on the value of a. Higher values of a result from 
higher values of average main fault dip. 

One of the most important features of the scheme is 
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that  large amoun t s  of hanging  wall in fo rmat ion  are used 
to const ra in  the fault  geomet ry  at depth.  This approach 

has two advantages .  First  it gives confidence in the 
result ,  and  secondly if no solut ion is found ,  inferences  
may be drawn concern ing  the under ly ing  assumptions  
(i.e. the fault  shape may have al tered dur ing  defor- 
ma t ion  or perhaps  there is d i sp lacement  out  of the p lane  
of the section).  Other  invers ion schemes which use the 
geomet ry  of a single hanging wall hor izon are less useful  
in this regard.  

A major  assumpt ion  made  in the invers ion scheme is 
that  all the de fo rmat ion  occurs within the p lane  of the 
section. For  two-d imens iona l  l abora to ry-mode l led  

faults this assumpt ion  is valid, but  in general  for no rma l  
faults in extens ional  sed imenta ry  basins,  this assump- 
t ion is likely to be incorrect .  Hence  a general ized three-  
d imens iona l  mode l  which includes an addi t ional  
pa ramete r  of obl ique  extens ion  within the hor izontal  
p lane  is be ing developed.  A t  present ,  it is not  clear 
how impor t an t  obl ique  hor izontal  ex tens ion  in three-  
d imens ions  will be in affecting the calculated fault  
geometry .  It  may well tu rn  out  that  in most  circum- 
stances two-d imens iona l  model l ing  is adequate .  How- 
ever  unt i l  careful testing is comple ted  we will not  know 
for certain.  
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